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What is OSI Model equivalent for energy ? 

5 – Application  

4 – Transport 

3 - Network (IP) 

2 - Data Link 

1 - Physical 
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What is OSI Model equivalent for energy ? 

• User interface, data model 
• Discovery, events 

•  Exchange within and 
between grids 

• Moving electrons on wire 

•  Price 
• Quantity 
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Power distribution 

“Technology / infrastructure that 
moves electrons from devices 

where they are available 
to devices where they are wanted” 

•  Important similarities between moving bits and 
moving electrons 

•  Important differences between moving bits and 
moving electrons 

All bits/packets different;  all electrons same 
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Needed system requirements (from JFQ*) 

•  Scalable 
•  Resilient 

•  Flexible / Ad hoc 

•  Interoperable 

•  Renewable-friendly 

•  Cost-effective 

•  Customizable 

•  Enable new features 

•  Enable new applications 

*Roege, Paul, Scalable Energy Networks, Joint Forces Quarterly, #62, Q3, 2011 

•  Any military context 

•  Any non-military context 
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Needed system capabilities 

•  Optimally match supply and demand (price) 
•  Match reliability and quality to device needs 

•  Enable arbitrary and dynamic connections 
–  devices, generation, storage, and “grids” 
–  “plug and play”; networked 

•  Efficiently integrate local renewables and 
storage 

•  Work with or without “the grid”  
–  (or any other grid) 

•  Use standard technology 

What grid model enables this? 
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Traditional power distribution 
•  Grid is a single undifferentiated “pool” of power 

•  Enormous complexity suggests difficult to manage 
–  Only works because it is NOT managed 

Fails to meet specified needs 
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“Distributed” power distribution 

•  Network of “grids” of  
various sizes 

•  Grids are managed locally 
•  Generation and storage 

can be placed anywhere 
•  Interfaces between grids 

–  enable isolation 
–  enable exchanging  

power any time  
mutually beneficial 
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“Distributed” power distribution 

•  Distributed power looks  
a lot like the Internet 

–  A network of grids 
(“intergrid”) 

•  Peering exchanges can  
be multiple, dynamic 

•  With reliability at edge,  
core can be less reliable 

•  Smallest piece is “nanogrid” 
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Scaling structure: communications and power 

          Internet 
 

 
Building/Campus 
Network 
 
 

Local Area Network 

“The Grid” 
 

 
Microgrid 
 
 
 

Nanogrid 

Wide area 

 

 

Management 

 

 
 

Device 
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What is a Nanogrid? 

�A (very) small electricity domain� 

•  Like a microgrid, only (much) smaller 

•  Has a single physical layer (voltage; usually DC) 

•  Is a single administrative, reliability, quality, and price domain 

•  Can interoperate with  
other (nano, micro) grids  
and generation through 
gateways 

•  Wide range in technology, 
capability, capacity 
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Existing nanogrid technologies 

No communications 
•  Vehicles – 12 V, 42 V, 400 V, … 
•  eMerge – 24 V, 380 V 
•  Downstream of UPS – 115 VAC 

With communications 
•  Universal Serial Bus, USB – 5 V 
•  Power over Ethernet, PoE – 48 V 
•  HDBaseT – 48 V 
•  Proprietary systems 

Power adapter systems (emerging) 
•  Wireless power technologies 
•  Universal Power Adapter for Mobile Devices, UPAMD – IEEE 
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IEEE – Universal Power Adapter for Mobile Devices 

Source: 
IEEE 
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Nanogrids do NOT (but Microgrids do) 

•  incorporate generation 
•  optimize multiple-output energy systems 

–  e.g. combined heat and power, CHP 

•  provide a variety of voltages (both AC and DC) 

•  provide a variety of quality and reliability options. 

•  connect to the grid 

•  require professional design / installation 

•  entail large costs 
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Village example 

•  Start with single house – car battery recharged every few days 
–  Light, phone charger, TV, … 
–  Add local generation – PV, wind, … 

B PV 
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Village example 

•  Start with single house – car battery recharged every few days 
–  Light, phone charger, TV, … 
–  Add local generation – PV, wind, … 

•  Neighbors do same 
–  Interconnect several houses 

•  School gets PV 
–  More variable demand  

•  Eventually all houses, businesses connected in a mesh 
–  Can consider when topology should be changed 

•  Existence of generation, storage, households, and 
connections all dynamic 

•  Can later add grid connection(s) 

From no electricity to distributed power – skip traditional grid;   
Similar to no phone to mobile phone – skip landline system 

B PV 

PV 

PV 

PV 

B 

B 
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Forward Operating Base Example 

Reliable nanogrid 

Bulk nanogrid 

Sleeping Showers Eating Commun 
ication 

Vehicle 
Maint. 

Water 
Treatment 

Fossil generation 
Renewable gen. 

External storage Each reliable nG also has 
local storage; Reliable nGs 
serve electronics and 
lighting; Bulk nGs serve 
HVAC, pumps. 

Supervisor server 
collects data and makes 
policy recommendations 
to nGs (does NOT 
control directly);  
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Nanogrid operation - internal 

•  Loads (devices) may always get ‘trickle power’ to 
communicate 

•  Loads request authority to use power (controller grants) 

•  Controller sets local price (forecast) and distributes 

•  Controller manages storage 

•  Normal operation – all allocation done by loads 
themselves based on price 

•  Emergency – controller can 
revoke/cut power 

•  Details technology-specific 
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Nanogrid operation – external (gateways) 

•  Controllers discover other grids (and generation)  
•  Exchange interest in sharing power (price, quantity) 

•  When mutually beneficial, power is exchanged  

•  External prices will often affect internal ones 

•  Controllers may track cumulative energy, $$$$ 

•  Only data exchanged are price, quantity 

•  Visibility only to immediately 
adjacent grids 
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Implementation 

•  Initial deployment of nanogrids connected to non-
communicating power sources (grid or microgrid) 

•  Nanogrids can be networked to each other 

•  Larger installations will want one (or more) microgrids 
–  Nanogrids networked to communicating microgrids 

•  Most (sometimes all) coordination between grids via price 

•  In emergencies, power links can be simply dropped 
•  Nanogrids do not connect directly to utility grid so 

microgrid islanding invisible to nanogrids 

•  Microgrids will need to implement standard gateways 
(once developed) 
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Why Nanogrids? 

•  Bring individual devices into grid context 
•  Pave way for Microgrids 

–  Increase microgrid utility; enable local microgrid prices 
–  Reduce microgrid cost and complexity 
–  Can scale/deploy much faster than microgrids 

•  Enable “Direct DC” (~10% savings) 

•  Better integrate with mobile devices, mobile buildings 

•  Help bring good electricity services to developing countries 

•  More secure 
–  Coordinate only with immediately adjacent (directly attached)  

grids / devices 
–  No multi-hop “routing” of power 
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The way forward 

Research 
•  Better document existing nanogrids 

–  Technologies, capabilities, applications, deployment, … 

•  Create working nanogrids – loads, controllers, gateways 
•  Create a nanogrid simulator 

Standards development 
•  Define a �meta-architecture� for controllers, gateways, 

prices, … 
•  Define specific gateways (voltage, communication) 

•  Define nanogrid implementation for existing technologies 

Deployment 
•  Install hardware 
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Conclusions 

•  Nanogrids can optimally match supply and demand 
–  Price: internally and externally 

•  Nanogrids can be key to success of microgrids 
–  Can be deployed faster, cheaper 

•  Need to be standards-based, universal 

•  Key missing technologies: pricing and gateways 

•  Nanogrids are a “generally useful technology” 
–  Like Internet 
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Thank you 


